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Abstract. We study inclusive electroproduction on the proton at low x and low Q2 using a soft and
a hard Pomeron. The contribution of the soft Pomeron is based on the Stochastic Vacuum Model, in
which a nonperturbative dipole-dipole cross section can be calculated by means of a gauge invariant gluon
field strength correlator. To model the hard Pomeron exchange we phenomenologically extend the leading
order evolution of a power-behaved structure function, F2 ∝ x−λ, proposed by López and Ynduráin.
This extension allows to consider both the case Q2 = 0 and the region of higher Q2 on the basis of the
same parametrization. A good simultaneous fit to the data on F2 and on the cross section σγp of real
photoproduction is obtained for λ = 0.37. With four parameters we achieve a χ2/d.o.f. = 0.98 for 222 data
points. In addition, we use our model of the inclusive γ∗p interaction to compute the longitudinal structure
function FL.

1 Introduction

Since the start of HERA exciting new information on the
proton structure at very small x has been produced. Re-
cently, the low x study has been extended to cover very
small virtualities Q2 [1,2]. This kinematical region is of
particular interest because a transition from the purely
perturbative scaling violations at large Q2 to different
physics at small Q2 can be observed.

We consider the photon-proton collision in the
cm frame. In this frame, the photon acquires a structure
leading to the interaction of two structured objects. Ac-
cordingly, at least at high cm energy and low Q2, the γ∗p
interaction has strong similarities to the hadron-hadron
interaction. Our consideration of the soft Pomeron is based
upon the fluctuation of the photon into a qq̄ dipole. Higher
Fock states (e.g. qq̄g) in the wave function of the photon
may lead to a hard Pomeron behaviour of the γ∗p cross
section.

In the framework of a model containing a soft and
a hard Pomeron we perform in the present paper a fit
to HERA data on F2 together with data from NMC and
E665 in a kinematical window given by 0.11 GeV2 ≤ Q2 ≤
6.5 GeV2, x ≤ 0.01, and W ≥ 10 GeV, with W represent-
ing the γ∗p cm energy. Moreover, all data on the total
absorption cross section σγp of real photons with W ≥
10 GeV are considered. The fit includes four free parame-
ters. Our investigation is a natural extension of previous
work [3], where F2 at fixed W (20 GeV) has been studied
as a function of Q2. In [3] only a soft Pomeron contribu-
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tion, derived in the Stochastic Vacuum Model (SVM) [4,
5], has been taken into account. The aim of the present pa-
per is to study the importance of the soft Pomeron as given
by the SVM in the low x and low Q2 region of HERA.

The SVM is a specific model of nonperturbative QCD.
It lives on the assumption that the infrared behaviour
of QCD can be approximated by a Gaussian stochastic
process. As central quantity of the SVM serves the cor-
relator of the gluon field strength (nonlocal gluon con-
densate), which consists of an Abelian and a non-Abelian
part, where the non-Abelian correlator gives rise to linear
confinement in terms of the Wilson area law. Three param-
eters determine the correlator: the overall normalization
is given by the local gluon condensate 〈g2FF 〉, while the
correlation length a fixes the shape of the correlator in
coordinate space. Finally, the parameter κ regulates the
relative weigth of the Abelian and the non-Abelian term.
These parameters are proper quantities of nonperturba-
tive QCD and can be obtained from lattice simulations.
More details on the technical aspects of the SVM may be
found e.g. in [6].

By means of the eikonal approximation an expression
for the dipole-dipole scattering amplitude of the SVM
has been derived [7]. Any diffractive reaction involving
hadrons or photons can be calculated by means of the
dipole-dipole amplitude and the wave functions of the par-
ticles. Besides studies on F2 [3,8], the SVM has been ap-
plied to the hadron-hadron scattering [7,9,10], photo- and
electroproduction of vector mesons [11,12] and of π0 [13],
and in a very recent work to the γ∗γ∗-interaction [14].

In the color-dipole picture of high-energy scattering
the cross section depends on the sizes of the scattered par-
ticles. As a consequence, for instance the value of about
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2/3 for the ratio of πp to pp total cross sections can natu-
rally be explained by the different radii of π and p. Though
the SVM gives a prediction for the dipole-dipole cross sec-
tion as function of the dipole sizes, the resulting cross
sections are energy-independent. In particular, the s0.08

dependence of soft high-energy hadron-hadron scattering
[15] does not follow from the SVM. (According to a re-
cent work [16] a behaviour like s0.094 gives a better fit to
hadron-hadron cross sections.) Any energy-dependence of
the scattering amplitude of the SVM has to be incorpo-
rated in a phenomenological way.

In order to explain the increase of F2 at low x and
finite Q2 the soft Pomeron behaviour of hadron-hadron
scattering is not sufficient. Therefore, in our treatment
we keep the energy-independent prediction of the SVM as
soft Pomeron and add, similar to other approaches (see
e.g. [17,8]), a hard Pomeron component. For quite some
time the BFKL-mechanism (exchange of a gluon-ladder)
[18] has been considered as microscopic explanation of a
hard Pomeron exchange. However, due to the poor con-
vergence of this perturbative approach [19], the status of
the BFKL-Pomeron is more than ever unclear. Because of
this situation, and the fact that we are mainly interested
in the behaviour of the soft Pomeron, we start from a sim-
ple ansatz for the hard Pomeron as derived by López and
Ynduráin [20] and obtained by the leading order DGLAP
evolution [21] of F2. We modify the solution of the DGLAP
equation by multiplying a phenomenological factor, lead-
ing to a parametrization which can be applied in the limit
Q2 → 0 without introducing a singularity in the cross sec-
tion of photoproduction. As a consequence of this modifi-
cation our hard Pomeron component is no longer, strictly
speaking, a solution of the DGLAP equation in the non-
perturbative region of low Q2.

In the analysis we neglect a contribution from meson
exchange, being aware of the fact that at W = 10 GeV
the trajectories of a2 and f2 give rise to an effect of about
10%. Nevertheless, a consideration of the meson exchange
introduces new parameters but has only minor influence
on the main results of our investigation. Even though we
make a fit to experimental data, we emphasize that in
the present work we are not aiming at a fine-tuning of
parameters.

2 Soft Pomeron

The structure function F2 is given by the sum of the longi-
tudinal and transverse total γ∗p cross section in the form

F2 =
Q2

4π2αQED
(σL + σT ) . (1)

The relevant cross sections due to the soft Pomeron ex-
change have been calculated in [3] from the imaginary part
of the forward amplitude for elastic γ∗p scattering in the
SVM. We obtain the result by summing over the flavours
f of the qq̄-fluctuation of the virtual photon,

σSV M
L/T =

∑
f

σSV M
f,L/T

=
∑

f

e2f

∫ 1

0
dz

∫ ∞

rcut

dr r If,L/T (z, r) , (2)

where ef = êfe (e: elementary charge) denotes the charge
of the different quark flavours. We take into account the
three light quarks u, d, s. In (2) z is the longitudinal mo-
mentum fraction of the quark and r the modul of the
two-dimensional vector r = r(cosϑ, sinϑ) between quark
and antiquark. The use of a lower bound rcut in the r-
integration differs from the treatment in [3] and will be
discussed in more detail below. The functions If,L/T (z, r)
read

If,L(z, r) =
Nc

4π2 4z2(1 − z)2Q2K2
0 (εfr) Jp(z, r) ,

If,T (z, r) =
Nc

4π2

{
[z2 + (1 − z)2]ε2fK

2
1 (εfr)

+m2
f K

2
0 (εfr)

}
Jp(z, r) , with (3)

ε2f = z(1 − z)Q2 +m2
f (Q2

eff ) .

These quantities are obtained from the absolute square of
the virtual photon light cone wave functions, which con-
tain the modified Bessel functions K0 and K1. Jp(z, r)
represents the soft Pomeron induced cross section for scat-
tering of a qq̄ color dipole of size r off the proton target
in the SVM [11]. For a general dipole-proton cross section
the expressions in (3) are identical to those given in [22].
In our approach Jp(z, r) can be written as

Jp(z, r) = 2
∫ 2π

0
dϑ

∫ ∞

0
db b

∫ 1

0
dzp

∫
d2rp

4π
×|ψp(rp)|2 J(b, z, r, zp, rp) , (4)

with b denoting the impact parameter between the color
dipoles of the photon and proton. For simplicity we con-
sider the proton in the quark-diquark picture and make
use of a Gaussian wave function,

ψp(rp) =
√

2
Sp

e−r2
p/4S2

p . (5)

The extension parameter Sp in (5) and the rms radius of
the proton are related according to Sp = 2rp,rms/

√
3.

The quantity J(b, z, r, zp, rp) in (4) is the interaction
amplitude for the scattering of two color dipoles. In the
SVM, J depends only very weakly on the momentum frac-
tions z and zp. For small dipole sizes r and rp one can
completely neglect this dependence in J , and hence also
in Jp. For small r, the dipole-proton cross section shows
the typical dipole-behaviour, Jp(z, r) ∝ r2, while for larger
values of r the cross section is no longer proportional to
r2. Around 1 fm for instance, one obtains a shape like r1.5

[11].
The SVM relates the dipole-dipole amplitude J in the

nonperturbative gluonic vacuum to the nonlocal gluon
condensate. For details about the computation of J we
refer the reader to the literature (see e.g. [7,11]). Here
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we only specify the field strength correlator. Assuming
that 〈F a

µν(z;w)F b
ρσ(0;w)〉 does not depend crucially on the

choice of the common reference point w, the most general
form of the correlator reads

g2〈F a
µν(z;w)F b

ρσ(0;w)〉 =
δab

N2
C − 1

1
12

〈g2FF 〉

×
{
κ(gµρgνσ − gµσgνρ)D(z; a)

+
1
2
(1 − κ)

[
∂µ(zρgνσ − zσgνρ)

+∂ν(zσgµρ − zρgµσ)
]
D1(z; a)

}
. (6)

The first tensor structure of the correlator is of
non-Abelian type and leads to confinement, whereas the
second term is an Abelian tensor. The shape of the cor-
relation functions D(z; a) and D1(z; a) is governed by the
correlation length a.

It is now obvious that the size of the dipole-proton
cross section Jp(z, r) is given by the parameters of the
field strength correlator (〈g2FF 〉 , a , κ) and the exten-
sion parameter Sp of the proton. The quantity κ is taken
from a lattice simulation [25], while the remaining three
parameters are fixed by the experimental values of the
total pp cross section and the slope of the differential
pp cross section, both taken at a cm energy of 20 GeV,
and in addition by the phenomenological qq̄-string ten-
sion ρ = 8κ a2〈g2FF 〉/81π. To be explicit we adopt the
values [11],

〈g2FF 〉 = 2.49 GeV4 , a = 0.346 fm ,

κ = 0.74 , Sp = 0.74 fm . (7)

In (3) εf denotes the extension parameter of the pho-
ton. It depends on the quark flavour through the quark
mass, and thus each flavour contributes in a different way
to the integrands If,L/T . A crucial quantity in If,L/T is
the Q2-dependent quark mass. For large values of Q2, the
hadronic component of the photon is a free qq̄ pair, while
at lower Q2 usually vector meson dominance (VMD) is
used. In our approach, the photon is represented by a qq̄
fluctuation over the whole region of Q2. This picture of
the photon has been studied in detail in [3] and leads
automatically to an effective quark mass interpolating be-
tween a constituent quark and a current quark. Making
use of quark-hadron duality the effective quark mass can
be derived by comparing the phenomenological photon po-
larization tensor, which is obtained from VMD-poles and
the perturbative continuum, with the polarization tensor
we get in our description of the photon. Since in the pho-
ton wave function Q2 appears together with the factor
z(1−z), the quark mass has been investigated as function
of Q2

eff = 4z(1 − z)Q2. The parametrization of the light
quarks is [3]

mu/d(Q2
eff ) = R · 0.22 (1 −Q2

eff/Q
2
0,u/d) GeV ,

for Q2
eff ≤ Q2

0,u/d = 0.69 GeV2 ,

mu/d(Q2
eff ) = 0 , for Q2

eff ≥ Q2
0,u/d , (8)

while for the strange quark one gets

ms(Q2
eff ) = R · [0.15 + 0.16 (1 −Q2

eff/Q
2
0,s)] GeV ,

for Q2
eff ≤ Q2

0,s = 1.16 GeV2 ,

ms(Q2
eff ) = R · 0.15 GeV , for Q2

eff ≥ Q2
0,s , (9)

with a parameter R = 1. In previous works on inclusive
scattering [3] and on vector meson production [12] the
cross sections induced by real photons have always been
too low by about 10−15%. This drawback can be removed
by lowering the quark masses. Therefore, in our numerical
calculation we take R = 0.87 which gives us the best fit to
the data. The mass reduction of 13% is probably within
the error bars which the values of mf in (8,9) actually
have.

For the lower bound of the r-integration in (2) we
choose rcut = a. Our hard Pomeron already describes the
physics of small color dipoles, even though we do not yet
have a dipole-formula for the hard cross section. To keep
at small distances the SVM part of the cross section in ad-
dition to the hard part certainly leads to a double counting
in this region. Of course, our specific separation in soft and
hard physics is to some extend arbitrary. In particular, one
could try to improve the final result by fitting the value
of rcut, which introduces however a new parameter. More-
over, e.g. lattice data for the field strength correlator show
a clear deviation from the specific correlator used in the
SVM at distances below the correlation length (c.f. [26]),
where the deviation is due to a manifest perturbative con-
tribution. This means that in the correlator a transition
between soft and hard contributions appears at distances
of the order 0.3–0.4 fm. The cut of the SVM contribution
is similar to the procedure proposed by Rueter [8] previ-
ously. Nevertheless, the low distance physics is described
in a different way in both approaches.

3 Hard Pomeron

Also for the hard Pomeron in principle a dipole descrip-
tion with an improved photon wave function containing
gluons in addition to the qq̄ pair holds. The scattering
of these gluons on the proton is by far not trivial, for
their transverse momenta can be small. A procedure has
to be developed to separate soft and hard contributions.
As working hypothesis the gluons with small light cone en-
ergies (i.e. finite light cone momenta and small transverse
momenta) are already in the parametrization of the gluon
field strength correlator of the SVM. There remain only
gluons with large light cone energies (i.e. very small light
cone momenta and large transverse momenta). These may
be treated perturbatively.

To model the contribution of the hard Pomeron we
consider the evolution of a power-behaved F2 as derived
by López and Ynduráin [20]. Perturbative QCD implies
that to leading order in the running coupling the singlet
structure function is of the form

F pert
2 (x,Q2) = B2 αs(Q2)−d+(1+λ) x−λ , where (10)
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d+(1 + λ) =
1
β0

(
12
λ

− 11 − 2
9

)
, and

β0 = 11 − 2
3
Nf , Nf = 3 .

In (10) d+ denotes the leading eigenvalue of the anomalous
dimension matrix of the quark-singlet and gluon evolution
kernel. The formula for d+ is valid for λ close to zero. The
quantities B2 and λ are free parameters. Equation (10)
can be applied only for small values of x and is based on a
singular gluon input. We emphasize that (10) is compat-
ible with Regge theory, since the intercept (1 + λ) of the
hard Pomeron does not depend on Q2.

While in [20] the expression (10) was used above Q2 =
3 GeV2, in a recent work Adel, Barreiro and Ynduráin [23]
have proposed to analyse F2 also for lower values of Q2 on
the basis of (10). However, in this case a phenomenological
modification of (10) is required in order to get a finite cross
section for photoproduction. One possible modification is
given in [23]. The authors make use of a specific freezing
of the strong coupling,

αs(Q2) → 4π
β0 ln ((Q2 + Λ2)/Λ2)

. (11)

Moreover, d+ has to be replaced using the self-consistency
equation

d+(1 + λ) = 1 + λ . (12)

One can now show immediately that by means of (11,12)
the total cross section of photoproduction

σγp =
4π2αQED

Q2 F2

∣∣∣∣∣
Q2=0

(13)

is finite. In [23] (12) has been solved leading to λ = 0.47.
In particular, in the case of photoproduction this value
seems to be too large as will become obvious in the next
section. Therefore, we also apply (12), but in contrast to
[23] we keep λ as a free parameter in our fit.

In addition to this parametrization, we consider an al-
ternative ansatz for the hard component F hard

2 . We multi-
ply F pert

2 in (10) by the phenomenological factor
(Q2/(Q2 + M2))1+λ and freeze the strong coupling in a
way different from the expression in (11). According to
that, the hard contribution reads

F hard
2 (x,Q2) =

C2 α̃s(Q2)−d+(1+λ)x−λ

(
Q2

Q2 +M2

)1+λ

, (14)

with α̃s(Q2) =
4π

β0 ln ((Q2 +M2)/Λ2
QCD)

,

where we apply a conventional ΛQCD = 0.25 GeV. To keep
the number of free parameters as small as possible the
same quantity M serves as freezing mass in α̃s and as pa-
rameter in the factor Q2/(Q2+M2). Therefore, our ansatz
for F hard

2 contains only three free parameters.
Formula (14) avoids a relation between the freezing mass

and ΛQCD in the strong coupling. At large Q2, QCD evo-
lution (to leading order) is restored, and no use of the ap-
proximation (12) has to be made. Because of these reasons
we consider the parametrization (14) as the most natural
phenomenological extension of (10) allowing us to interpo-
late between Q2 = 0 and higher values of Q2. Already in
the past various authors (see e.g. [27,17]) have exploited
terms of the type Q2/(Q2 + M2) in order to reach the
correct behaviour of F2 at low Q2.

4 Fitting inclusive photo- and
electroproduction

The complete ansatz for the structure function reads

F2 = F soft
2 + F hard

2 , (15)

where the soft part F soft
2 represents the contribution of

the SVM as discussed in Sect. 2. Experimental data for
both σγp and F2 are fitted through (15). In practice we
fix F soft

2 from the SVM and fit the two sets of parameters
(B2, λ, Λ or C2, λ,M) to the difference of the data and the
soft Pomeron contribution. Since the evaluation of F soft

2
requires tedious multiple integrations, the only free pa-
rameter of the soft Pomeron (quantity R in (8,9)) is not
actually fitted but rather optimized on a discrete set of
numbers obtained in separate calculations.

For the data on F2 we use the kinematical cuts Q2 ≤
6.5 GeV2, x ≤ 0.01 andW ≥ 10 GeV. The limitation inQ2

is mainly due to the fact that the soft Pomeron part does
not satisfy the DGLAP equation. Our expression for the
hard Pomeron requires the cut in x. Since the scattering
amplitude of the SVM is obtained from an eikonal approx-
imation the limitation in W becomes mandatory. The fit
contains 150 data points obtained at HERA [1,2,28,29],
8 data points from NMC [30] and 43 data points from
E665 [31]. Furthermore, 21 photoproduction data [32,33]
are included under the condition W ≥ 10 GeV.

In the first parametrization a χ2/d.o.f. = 1.00, i.e. a
good description of the experimental data is achieved. In
the calculation of χ2 the systematic and statistical errors
have been folded in quadrature. The resulting values of
the parameters are

B2 = 0.0268 ± 6% ,

λ = 0.37 ± 1% ,

Λ = 1.12 GeV ± 2% . (16)

For the second parametrization the fit improves slightly.
We obtain χ2/d.o.f. = 0.98 with the parameters

C2 = 0.0025 ± 3% ,

λ = 0.37 ± 1% ,

M = 1.02 GeV ± 4% . (17)

Obviously, the quality of the two fits is very simi-
lar. The difference of both fit-functions becomes certainly
more important as soon as data at higher values of Q2 are
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Fig. 1. Total cross section for real photoproduction. Low-
energy experimental points are from [32], high-energy points
are from [33]. Our fit (full line) is compared to those performed
by Donnachie-Landshoff (dashed line) [17] and Adel-Barreiro-
Ynduráin (dotted line) [23]

involved. The errors of the parameters in (16,17) are very
small. Our result for λ is on the lower edge of the recent re-
sult (λ = 0.42) obtained by Donnachie and Landshoff [17]
and far below the value λ = 0.47 of [23]. The numbers of
the saturation scales Λ = 1.12 GeV and M = 1.02 GeV
are quite similar to the typical scale (1.2 − 1.5 GeV) used
in [27], and may be related to the lowest hadronic state
having a qq̄g or qq̄qq̄ structure. These states could be con-
sidered as the entrance channel for the hard Pomeron.

In all numerical results we discuss in the following, our
second ansatz including the parameters of (17) enters. We
first consider the cross section for real photoproduction
(see Fig. 1). The soft Pomeron gives rise to the energy-
independent contribution σSV M

γp = 105.9µb. This number
depends crucially on the value of the constituent quark
mass, where a reduction of the quark mass increases the
cross section. In order to get in our two-component model
a satisfying description of σγp for the whole energy range
a reduction of the quark masses is unavoidable. The rise
of σγp with increasing cm energy W is completely given
by the hard Pomeron. This behaviour is different from
the fit of Donnachie and Landshoff [17], where the hard
Pomeron plays only a subordinate role in real photopro-
duction and the shape of σγp is mainly determined by the
s0.08 dependence of the soft Pomeron contribution.

The parametrization of Adel, Barreiro and Ynduráin
[23] is similar to our approach. Contrary to us, these au-
thors exploit for the soft Pomeron part in F2 the simple
VMD-inspired expression Q2/(Q2 + Λ2). Their fit, which
includes data on F2 down to Q2 = 0.32 GeV2, can only
describe the HERA data on σγp but underestimates the
low energy data by about 35%. One reason of this short-
coming is certainly the high value λ = 0.47 adopted in
[23].

We now consider the results for F2 by focusing first
on the Q2-dependence of the structure functions at fixed
W . Fig. 2, showing F2 at W = 20 GeV, demonstrates a
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W
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20
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2 )

Q2 [GeV2]

HARD+SOFT

HARD
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Fig. 2. Structure function F2 at fixed W = 20GeV. The
contributions of the soft and the hard Pomeron exchange are
shown separately
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Fig. 3. F2 vs Q2 at fixed cm energy W , from bottom to top:
W = 20 (×1), 60 (×2), 100 (×3), 200 (×4)GeV. The data
points and curves are rescaled by the numbers in brackets.
Experimental points are: H1 A [1], H1 B [28], ZEUS A [2],
ZEUS B [29], NMC [30] and E665 [31]. The cm energies for
the experimental points lie within a range of ±5% around the
quoted numbers

good agreement with the experimental data. The hard and
the soft contributions are shown separately. At low Q2,
both F soft

2 and F hard
2 are increasing with Q2, where the

soft part reaches a maximum around 2 − 3 GeV2. Since
at higher Q2 the qq̄ dipoles of the photon are dominantly
small, the decrease of F soft

2 in this kinematical region is
due to the lower bound rcut in the integration over the
dipole sizes. We emphasize that the shape of F soft

2 has
a strong similarity with the purely empirical finding of
Donnachie and Landshoff [17]. It is interesting to note
that the soft and the hard Pomeron exchanges give sizable
contributions for a relatively large range in Q2. The hard
Pomeron leads already at Q2 = 1 GeV2 to an effect of
about 25%, while on the other side the soft Pomeron part
is at Q2 = 6 GeV2 of the order 60% and therefore still
very large.
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[34]. The soft contribution of the SVM is shown separately

To give an impression of the W -dependence, F2(Q2) is
shown in Fig. 3 for different cm energies. While F soft

2 is
independent on W , the behaviour of the hard part is given
by F hard

2 ∝ 1/xλ ≈ (W 2/Q2)λ. This leads to the fact that
for high W the hard part dominates even at relatively
low Q2. In comparison with the case of W = 20 GeV we
find that for W = 200 GeV the hard Pomeron contributes
about 65% at Q2 = 1 GeV2 and 80% at Q2 = 6 GeV2.

In Fig. 4 we plot F2(Q2) for various values of x con-
centrating on the region of HERA kinematics. This plot
demonstrates that our model allows to fit the data for sev-
eral orders of magnitude in x. To compare the relative con-
tribution of the soft and the hard Pomeron exchange we
consider here for convenience only the experimental point
with the lowest value in x and Q2 (x = 0.42 · 10−5, Q2 =

0.15). In this case the soft part turns out to be of the order
55%.

Finally, we discuss the logarithmic slope dF2/d logQ2

as shown in Fig. 5, where the data points are taken from
[34]. The experimental data in Fig. 5 are usually consid-
ered as proof of a breakdown of the perturbative scaling
violations as given by the DGLAP equation [35] at a cer-
tain Q2

0. However, as has been pointed out e.g. in [36],
the value of Q2

0 is strongly dependent on the specific se-
lection of the experimental points. Our two-component
model explains the data on the derivative quite well. The
contribution of the SVM is shown separately in Fig. 5. At
very low values of Q2, the soft Pomeron gives rise to an
effect of about 50%. This effect decreases with increasing
Q2 leading to a slightly negative value above 2 − 3 GeV2.
The shape of the soft contribution just reflects the Q2-
dependence of the SVM part shown in Fig. 2.

5 Longitudinal structure function

Without introducing any new parameter we are now able
to compute the longitudinal structure function FL. Mak-
ing use of the relation

FL =
Q2

4π2αQED
σL (18)

and (2), the calculation of the SVM contribution is
straightforward. The longitudinal cross section has to van-
ish in the limit Q2 → 0. In the SVM, where σL ∝ Q2 at
low Q2, this condition is automatically fulfilled.
To determine a hard component of FL we proceed as fol-
lows. In perturbation theory the first nonvanishing contri-
bution, arising from the QCD compton process and boson-
gluon fusion, is given by [37],

F pert
L (x,Q2) =

αS(Q2)
2π

x2
∫ 1

x

dy

y3

[
8
3
F pert

2 (y,Q2)

+4
∑

f

ê2f yg(y,Q
2)

(
1 − x

y

)]
. (19)

The gluon density g in (19) is related to the gluon struc-
ture function F pert

G via

NfF
pert
G (x,Q2) =

∑
f

ê2f xg(x,Q
2) . (20)

For low values of x, in [23] both F pert
G and F pert

2 have
been determined on the same basis to leading order in the
running coupling. The two structure functions are related
according to

F pert
G (x,Q2) =

d+(1+λ)−D11(1+λ)
D12(1 + λ)

F pert
2 (x,Q2) ,with

D11(n) =
16
3β0

[
1

2n(n+ 1)
+

3
4

− n
∑

k

1
k(k + n)

]
,

D12(n) =
2Nf

β0

n2 + n+ 2
n(n+ 1)(n+ 2)

. (21)
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Fig. 6. FL vs Q2 at fixed cm energy W , from bottom to top:
W = 20, 60, 100 , 200GeV

The quantities D11 and D12 are matrix elements of the
anomalous dimension matrix, and d+ is the eigenvalue as
defined in (10). By means of the expressions in (10,21) the
structure function F pert

L can easily be calculated. To get
a hard component of FL with an appropriate behaviour
at low Q2 we modify the perturbative result in the same
spirit as we have done in (14) for F2. This means, we multi-
ply F pert

L by the factor (Q2/(Q2 +M2))2+λ, and moreover
use the coupling α̃s in (14). Therefore, we finally obtain

F hard
L (x,Q2) =

C2

2π(2 + λ)
α̃s(Q2)−d+(1+λ)+1x−λ (22)

×
[
8
3

+
4Nf

3 + λ

d+(1 + λ) −D11(1 + λ)
D12(1 + λ)

](
Q2

Q2 +M2

)2+λ

.

Obviously, by construction the behaviour of F hard
L and

F soft
L at low Q2 coincides since both are proportional to
Q4 near the real photon point.

In Fig. 6 we plot FL as function of Q2 for different val-
ues of the cm energy W . At higher values of Q2, the de-
crease of the energy-independent soft contribution F soft

L is
more marked than in the case of F2. This behaviour arises
since the qq̄ dipole of a longitudinal photon, in average, is
smaller than the hadronic fluctuation of a transverse pho-
ton. As a consequence, at W = 200 GeV and Q2 = 6 GeV2

the hard component exhausts almost 95% of the total re-
sult.

To compare our results with data we calculate the ratio
RLT = σL/σT , which is the observable usually measured
in experiments. In terms of the soft and hard components
of FL and F2 this ratio can be written as

RLT =
F soft

L + F hard
L

(F soft
2 − F soft

L ) + (F hard
2 − F hard

L )
. (23)

In the kinematical region of our fit there exist two data
points from the NMC experiment [30]. As can be seen in
Tab. 1, our results agree fairly with these data. The agree-
ment obviously adds confidence to our approach, even if it
is clear that we are not able to really test the model with
only two data points.

Table 1. Comparison of the ratio RLT in (23) with data
points from [30]

x Q2 [GeV2] Rexp
LT RLT

0.0045 1.38 0.537 ± 0.129 0.374
0.0080 1.31 0.337 ± 0.120 0.347

6 Summary and discussion

We have presented a two-component model for inclusive
γ∗p scattering, which consists of a soft and a hard
Pomeron and is suitable in the region of low x and low
Q2. The four free parameters of the model have been
adjusted to the available data on the structure function
F2 of the proton (for 0.11 ≤ Q2 ≤ 6.5 GeV2, x ≤ 0.01,
W ≥ 10 GeV) and on the total cross section of real pho-
toabsorption (for W ≥ 10 GeV). The fit includes 222 data
points and leads to the result χ2/d.o.f. = 0.98.

The soft Pomeron has been calculated from the
Stochastic Vacuum Model, which can be considered as an
approximation of QCD in the infrared region. The SVM
describes the complicated structure of the QCD vacuum
in terms of a nonlocal gluon condensate, where the vari-
ation of the condensate in Minkowski space-time is gov-
erned by the correlation length a. In the framework of the
SVM, diffractive scattering of two particles is equivalent
to the scattering of two Wegner-Wilson-loops, leading au-
tomatically to cross sections in the color-dipole picture. To
fix the distribution of the loops in the transverse space,
valence quark wave functions of the particles have to be
introduced.

The wave function of the photon has been determined
in perturbation theory and accounts for the fluctuation of
the γ∗ into a qq̄ state. This description differs from VMD
frequently used in the region of low Q2. A reasonable si-
multaneous description of F2 and σγp for low and high W
by means of VMD is difficult, and requires in general fur-
ther parameters. VMD of the photon enters in our picture
only through the determination of the quark masses by
quark-hadron duality [3], and hence in a indirect way.

The soft Pomeron contains only one free parameter
which regulates the overall normalization of theQ2-depen-
dent quark masses in the photon wave function. Compared
to previous work on F2 at fixed W = 20 GeV [3], per-
formed only with a soft Pomeron, our fit favors a reduction
of the quark masses by 13%. Such a reduction improves
also e.g. the cross section for photoproduction of ρ-mesons
[12]. The remaining (four) parameters of the soft Pomeron
have been taken from other sources and left unchanged
[11].

The cross sections of the SVM are energy-independent,
contrary to the s0.08 behaviour of the soft Pomeron in
hadron-hadron scattering. To describe the data on F2 ob-
tained in fixed-target experiments and at HERA a hard
Pomeron has to be considered in addition. We have mod-
eled a hard component by starting from the leading order
QCD evolution of a power-behaved structure function F2
(F2 ∝ x−λ) [20]. Assuming a singular gluon input, the



608 U. D’Alesio et al.: Soft and hard Pomeron in the structure function of the proton at low x and low Q2

evolution does not produce a Q2-dependence in the inter-
cept, and hence the result is not in conflict with Regge
theory. The result of the evolution has been multiplied by
a simple phenomenological factor in order to obtain a fi-
nite cross section for real photoproduction. Our fit leads
to λ = 0.37, which is close to a recently proposed value
(λ = 0.42) by Donnachie and Landshoff [17].

The parameters of the fit have been used to calculate
also the longitudinal structure function. Like in the case of
F2 we have to modify the perturbative part of FL, which
serves as starting-point for the hard component, by a phe-
nomenologal factor in order to enforce a vanishing σL at
Q2 = 0. The numbers for the ratio RLT = σL/σT are
in good agreement with two data points from the NMC
experiment. Up to now there exist no HERA data in the
kinematical region of our fit. However, recent activities at
HERA will provide very soon final results from a direct
measurement of FL at low Q2 [38].

During the last time many people investigated F2 at
low x and especially at low Q2 with different models. The
approaches comprise shadowing effects, Pomerons with
a Q2-dependent intercept, VMD calculations in combi-
nation with perturbative evolution and others (see e.g.
[39–47]). Moreover, two-component Pomeron models have
been applied to the γ∗p interaction by various authors
[23,48,49,36,17,8]. With a soft and a hard Pomeron Don-
nachie and Landshoff [17] presented for a large kinemat-
ical region a very good fit to σγp and F2 using 10 pa-
rameters. In this work not only the intercepts, but also
the residues of both Pomerons were fitted. In contrast to
this, the residue of our soft Pomeron has been fixed by the
SVM and related to parameters of nonperturbative QCD.
In addition, at higher values of Q2, the residue of the hard
Pomeron follows the (leading order) evolution of QCD.

Our work strongly overlaps with the approach of Adel,
Barreiro and Ynduráin [23], since we are using essentially
the same expression for the hard Pomeron. However, we
differ in the way of performing the limit Q2 → 0 in the
hard part and, in particular, in the ansatz of the soft
Pomeron which is given by a single VMD-pole in [23].
The parametrization of [23], obtained by a fit to data on
F2, fails in describing the data on σγp at low cm energies.

The work of Rueter [8], where a good description of the
γ∗p interaction was achieved, is also based on the SVM
and therefore closest to ours. As discussed in detail in
Sect. 2, we cut the soft proton-dipole cross section below
the correlation length a = 0.346 fm. The interaction of
small dipoles is taken into account by the hard Pomeron.
A transition between soft and hard physics at distances of
the order of the correlation length is suggested by lattice
calculations of the field strength correlator [26]. In [8] the
treatment of the dipole-proton cross section also changes
for r < a. Contrary to our approach, Rueter still makes use
of the residue of the soft Pomeron in the region of 0.16 −
0.35 fm, but multiplies for this kinematics the cross section
by the energy-dependence of a hard Pomeron (intercept
1.28). Dipoles with an extension smaller than 0.16 fm are
treated by perturbative two-gluon exchange.

The extension of our two-component model to large
Q2 still has to be analysed. Moreover, one has to study
the consequences in the case that our soft contribution is
multiplied by the energy-dependence of the soft Pomeron
of hadron scattering. If the fit significantly improves we
would interpret this result as a further hint that a soft
Pomeron leading to a slight energy-increase is required
not only in the interactions of hadrons but also in γ∗p
interaction.
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